Science

In a groundbreaking study conducted by scientists at the University of Nottingham’s School of Physics, a specially designed 3D printed vacuum system has been developed to trap dark matter. The primary goal of this experiment is to detect domain walls, a crucial step in unlocking some of the universe’s deepest mysteries. Dark matter and dark
0 Comments
Halide perovskites have gained attention as promising materials for applications in photovoltaics, light-emitting diodes, and other optoelectronic devices due to their unique properties. Recent research conducted at the University of Texas at Austin sought to uncover the origin of the remarkable carrier lifetimes observed in these materials. Researchers Jon Lafuente, Chao Lian, and Feliciano Giustino
0 Comments
In a groundbreaking study published in the journal Optica, researchers at HHMI’s Janelia Research Campus have introduced a new approach to microscopy by applying techniques commonly used in astronomy to unblur images of far-away galaxies. This innovative adaptation aims to provide biologists with a faster and more cost-effective method to obtain clearer and sharper microscopy
0 Comments
Advancements in photonic technology have paved the way for innovations in imaging, communication, and directed energy. One such breakthrough is the development of a free-standing microscale photonic lantern spatial mode (de-)multiplexer using 3D nanoprinting. This compact and versatile device marks a significant step forward in the field, offering new opportunities for system integration and the
0 Comments
The researchers at the University of California, Los Angeles (UCLA) have made a remarkable advancement in optical imaging technology with the development of a new all-optical complex field imager. This cutting-edge device is capable of capturing both the amplitude and phase information of optical fields without the need for digital processing. This breakthrough innovation has
0 Comments
In a recent study published in Advanced Science, a groundbreaking achievement was made in the field of magneto-superelasticity. Researchers were able to develop a Ni34Co8Cu8Mn36Ga14 single crystal with a remarkable 5% magneto-superelasticity. This was accomplished through the introduction of ordered dislocations to form preferentially oriented martensitic variants during the magnetically induced reverse martensitic transformation. Elasticity
0 Comments
A groundbreaking study published in Science Advances by researchers at JPMorgan Chase, the U.S. Department of Energy’s Argonne National Laboratory, and Quantinuum has unveiled a significant breakthrough in quantum algorithmic speedup. The study focused on the quantum approximate optimization algorithm (QAOA), a widely studied algorithm with applications in diverse fields such as logistics, telecommunications, financial
0 Comments