In a recent study published in Advanced Science, a groundbreaking achievement was made in the field of magneto-superelasticity. Researchers were able to develop a Ni34Co8Cu8Mn36Ga14 single crystal with a remarkable 5% magneto-superelasticity. This was accomplished through the introduction of ordered dislocations to form preferentially oriented martensitic variants during the magnetically induced reverse martensitic transformation. Elasticity
Science
A groundbreaking study published in Science Advances by researchers at JPMorgan Chase, the U.S. Department of Energy’s Argonne National Laboratory, and Quantinuum has unveiled a significant breakthrough in quantum algorithmic speedup. The study focused on the quantum approximate optimization algorithm (QAOA), a widely studied algorithm with applications in diverse fields such as logistics, telecommunications, financial
Plants have the incredible ability to draw water from their roots to nourish their stems and leaves, creating an electric potential in the process. This electric potential holds promise as a renewable energy source. However, plants, like all living organisms, are governed by a circadian rhythm, which influences their biological processes. This daily cycle involves
The advancements in nonlinear light microscopy have opened up new possibilities for observing complex biological processes. However, the use of intense light in this process can also have damaging effects on living matter. A recent study conducted by research groups at the Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und
In a recent study published in Science Advances, researchers explored the impact of twist engineering on valley polarization in electrically controlled transition metal dichalcogenide heterobilayers (hBLs). This groundbreaking research sheds light on the potential for manipulating valley degrees of freedom in such systems, highlighting the importance of moiré patterns and twist angles in controlling excitonic
The exploration of space has always been an area that sparks curiosity and drives innovation. Thanks to human ingenuity and the unique conditions of zero gravity, scientists have been able to delve into new realms of material science that were previously inaccessible. Through the collaborative efforts of a global team of researchers, a new benchmark
The recent collaboration between the Shenzhen Institutes of Advanced Technology (SIAT) and Central China Normal University has led to a groundbreaking development in the field of medical imaging. A high-performance perovskite X-ray complementary metal-oxide-semiconductor (CMOS) detector has been created, promising to revolutionize the way we approach X-ray imaging for diagnostic and treatment purposes. X-ray imaging
Recent research conducted by scientists from the Universities of Manchester and Cambridge has unveiled a groundbreaking discovery in the field of quantum information storage. By studying a “single atomic defect” in a layered 2D material known as hexagonal boron nitride (hBN), researchers have demonstrated the ability to retain quantum information for microseconds at room temperature.
Soft robotics has been a growing field with numerous applications in various industries, from manufacturing to healthcare. One of the key components in soft robotics is hydrogels, which are materials that primarily consist of water and are widely present in everyday items like food jelly and shaving gel. These hydrogels have the potential to greatly
In a groundbreaking development, researchers at the University of Bristol have achieved a significant milestone in the field of quantum technology by successfully integrating the world’s smallest quantum light detector onto a silicon chip. This remarkable feat, detailed in the paper titled “A Bi-CMOS electronic photonic integrated circuit quantum light detector,” published in Science Advances,