Science

The concept of objects disappearing seamlessly has always been a fascinating idea, from primitive camouflage techniques to the advanced metamaterial-based cloaks we see today. The trajectory of human civilization has brought us closer to achieving this goal, with recent advancements in the field of aero amphibious invisibility cloaks. Researchers at Zhejiang University have made significant
0 Comments
For a long time, the scientific community believed that amorphous solids lacked the ability to selectively absorb light due to their disordered atomic structure. However, recent research conducted at the University of Ottawa has shattered this misconception. A groundbreaking study led by Professor Ravi Bhardwaj and his team of researchers has revealed that amorphous solids,
0 Comments
In a groundbreaking development, a research team led by Professor Wang Cheng from the Department of Electrical Engineering (EE) at City University of Hong Kong (CityUHK) has successfully created a microwave photonic chip capable of ultrafast analog electronic signal processing and computation using optics. This chip surpasses traditional electronic processors in speed and energy efficiency,
0 Comments
Topological wave structures have been a topic of interest within the physics research community, with physicists conducting extensive studies on various wave systems. While there has been significant attention on structures such as vortices and skyrmions, the most classical example of water waves has surprisingly remained largely unexplored. Researchers at RIKEN recently sought to address
0 Comments
The energy emitted by the sun and other stars is a result of a series of nuclear fusion reactions. The final stage of these reactions involves the fusion of protons with beryllium-7 to produce boron-8. This particular process is crucial in determining the flow of high-energy solar neutrinos that reach the Earth. However, replicating these
0 Comments
In today’s world, solving complex problems efficiently is essential. Traditional computers often face difficulties when dealing with a large number of interacting variables, leading to inefficiencies like the von Neumann bottleneck. To overcome this challenge, a new type of computing known as collective state computing has emerged. This approach maps optimization problems onto something called
0 Comments
The scientific community has long been puzzled by the enigmatic forces of the universe, particularly in the realm of quantum gravity. Despite the groundbreaking discoveries of Isaac Newton and Albert Einstein, the complexities of how gravity operates on a microscopic scale have remained elusive. However, a recent breakthrough by physicists at the University of Southampton,
0 Comments