Science

The concept of antimatter is relatively new, starting with British physicist Paul Dirac’s theory in 1928. He predicted the existence of antielectrons, or particles with opposite charges to electrons. Since then, scientists have discovered antimatter equivalents for all fundamental particles. However, this discovery has raised questions about the scarcity of antimatter in the universe compared
0 Comments
In a recent publication in Nature Reviews Physics, Professors Andreas Crivellin and Bruce Mellado have brought attention to anomalies in the behavior of particles at the Large Hadron Collider (LHC). These anomalies suggest the existence of new bosons, which could potentially revolutionize our understanding of particle physics. Particle physics is the study of fundamental particles
0 Comments
Semiconductor nanocrystals, commonly referred to as colloidal quantum dots (QDs), have revolutionized the understanding and exploration of quantum effects at the nanoscale. Prior to the discovery of QDs, the concept of size-dependent quantum effects was well-known to physicists, but the realization of these effects in tangible nanoscale objects remained elusive. The unique property of QDs
0 Comments
Excitons are microscopic, particle-like objects that play a crucial role in the optical and magnetic properties of certain materials, particularly in van der Waals magnets. Scientists at the U.S. Department of Energy’s Brookhaven National Laboratory have conducted groundbreaking research to uncover the formation and behavior of excitons in a crystalline material known as nickel phosphorus
0 Comments
Quantum entanglement is a phenomenon that has captivated scientists for decades. It describes the interconnectedness of particles at a quantum level, even when they are separated by vast distances. One specific form of entanglement involves entangled photons, which are light particles generated by shining light on certain types of crystals. This process, known as spontaneous
0 Comments
Quantum simulation offers a groundbreaking approach for scientists to delve into the depths of complex systems that are otherwise insurmountable by classical computers. This technology has opened up new possibilities in various fields, ranging from financial modeling to cybersecurity, pharmaceutical discoveries, AI, and machine learning. The ability to explore molecular vibronic spectra, a critical aspect
0 Comments
The discovery of superconductors and their incredible ability to conduct electricity without any energy loss has fascinated researchers for over a century. These materials have the potential to revolutionize technology in various fields, from computers and cell phones to the electric grid and transportation. However, the downside is that superconductors usually only function at extremely
0 Comments