Science

The field of nuclear physics has witnessed unparalleled advancements in recent years, thanks to the advent of new generation radioactive-ion beam facilities. These cutting-edge facilities have revolutionized the way experiments are conducted and have opened up exciting possibilities for discovering new isotopes and delving into the realms of exotic nuclei. This has significantly contributed to
0 Comments
Semiconductor moiré superlattices have recently garnered significant attention in the field of quantum physics. These material structures, composed of artificial atom arrays arranged in a moiré configuration, offer high tunability and exhibit strong electron interactions. Researchers at Massachusetts Institute of Technology (MIT) have recently conducted a study to further explore these materials and delve into
0 Comments
Quantum computing has made significant progress in recent years, with companies like Google and IBM offering cloud-based quantum computing services. However, these quantum computers still face limitations when it comes to solving problems that traditional computers struggle with due to the lack of available qubits, the basic units of quantum information. Unlike binary bits in
0 Comments
The pursuit of improved quantum computer performance has always been a paramount goal for scientific communities. However, a recent experimental study conducted by a joint team from Los Alamos National Laboratory and D-Wave Quantum Systems challenges the conventional approach. Instead of solely focusing on achieving superior quantum computer performance over classical counterparts, the team aimed
0 Comments
In a groundbreaking achievement, a team of experimentalists at the Max Planck Institute of Quantum Optics (MPQ) and theorists at the Chinese Academy of Sciences (CAS) have successfully created and stabilized a new type of molecule known as field-linked tetratomic molecules. These “supermolecules” have only been able to exist at ultracold temperatures, and their existence
0 Comments
In a groundbreaking research study, an international team of scientists has successfully conducted ultra-precise X-ray spectroscopic measurements of helium-like uranium. Led by researchers from Friedrich Schiller University Jena and the Helmholtz Institute Jena in Germany, the team achieved remarkable results by disentangling and separately testing quantum electrodynamic effects for extremely strong Coulomb fields of the
0 Comments
In a recent study published in Nature Communications, researchers from Los Alamos National Laboratory have made significant progress in the field of quantum devices by investigating topological phases of matter. By utilizing a unique strain engineering approach, the research team successfully converted hafnium pentatelluride (HfTe5) into a strong topological insulator phase. This breakthrough has the
0 Comments