Nuclear fusion has long been heralded as a promising source of clean energy, yet the challenge of finding suitable materials for construction and shielding in fusion reactors remains a significant barrier. Recent advancements from the Department of Energy’s Oak Ridge National Laboratory (ORNL) underscore a pivotal shift in this realm—leveraging artificial intelligence (AI) to discover
Science
The intricate world of atomic nuclei has long captivated scientists, revealing a complex interplay of protons and neutrons that defines the stability and characteristics of various elements. John Archibald Wheeler’s adage, “the universe is a giant atom,” encapsulates the remarkable parallels between physical structures and the atomic realm. In a groundbreaking study led by researchers
At the forefront of modern physics, researchers at TU Wien in Vienna have achieved a remarkable milestone: the generation of laser-synchronized ion pulses having a duration of less than 500 picoseconds. This innovative technique opens new avenues for observing rapid chemical processes occurring on material surfaces, which can significantly advance our understanding of chemical reactions
Recent advances in semiconductor research have shed light on the remarkable properties of tellurium (Te), particularly in the realm of nonlinear Hall effects (NLHE) and wireless rectification at room temperature. Published in Nature Communications, the findings reveal significant potential applications for this technology in the development of advanced electronic devices, marking a substantial step forward
In the realm of quantum physics, the interactions between quantum spins play a crucial role in describing various remarkable phenomena such as magnetism and superconductivity. These behaviors, while captivating, have posed significant challenges for physicists aiming to replicate them in controlled laboratory settings. A recent groundbreaking study published in Nature has made considerable strides toward
Recent advancements in computational science have led to the creation of groundbreaking tools that revolutionize the way we understand and manipulate materials. One such tool, TMATSOLVER, has emerged from the innovative minds at Macquarie University. This software package stands at the forefront of metamaterial research, promising to enhance our capability to design materials that interact
Rohit Velankar, a senior at Fox Chapel Area High School, found himself pondering the rhythmic sound of juice pouring into a glass. This simple everyday task sparked a curiosity in him about whether a container’s elasticity could influence the way its contents drained. Initially, Rohit’s inquiry was meant for a science fair project, but it
In a groundbreaking study led by Professor Sheng Zhigao at the Hefei Institutes of Physical Science of the Chinese Academy of Sciences, the phenomenon of strong nonlinear magnetic second harmonic generation (MSHG) induced by ferromagnetic order in monolayer CrPS4 was observed for the first time. This discovery holds significant implications for the field of optoelectronics.
Neutrinos, the elusive particles that are the second most abundant in the universe, have long puzzled scientists due to their unique properties. Researchers at the Short-Baseline Near Detector (SBND) at Fermi National Accelerator Laboratory have recently achieved a significant milestone by detecting the first neutrino interactions. This breakthrough marks the culmination of years of planning,
A groundbreaking discovery in the field of spintronics has been made by the Nanodevices group at CIC nanoGUNE, in collaboration with research staff from the Charles University of Prague and the CFM center in San Sebastian. This new complex material, designed by the research team, has opened up a realm of possibilities for the development