Exploring the field of non-Hermitian systems, researchers have recently made groundbreaking progress by observing a non-Hermitian edge burst in quantum dynamics. This discovery sheds light on the unique behavior of systems characterized by dissipation, interactions with the environment, or gain-and-loss mechanisms. The study showcases the significance of understanding non-Hermitian systems and their potential applications in
Science
In the world of physics, systems that consist of many interacting small particles can often be incredibly complex and chaotic. It may seem daunting to try and understand and describe these systems, but there are cases where simple theories can be applied to make sense of the chaos. But can this simplicity also be extended
Quantum error correction is a crucial aspect of developing fault-tolerant quantum computers that can outperform classical computers in certain tasks. Over the years, researchers have explored various methods to achieve efficient error correction. The traditional approach involves encoding a single logical qubit onto multiple physical qubits and using a decoder to retrieve the logical qubit.
Graphene, a single layer of carbon atoms in a hexagonal lattice, has already been recognized for its exotic properties that have paved the way for groundbreaking discoveries in the field of physics. However, when two or more layers of graphene are combined, an entirely new realm of possibilities opens up. The recent research conducted by
Quantum entanglement is a phenomenon that has been at the forefront of research in the field of quantum technology. Researchers from the Institute for Molecular Science recently conducted a study on quantum entanglement between electronic and motional states in an ultrafast quantum simulator. Their findings, published in Physical Review Letters, shed light on the complex
Recent research conducted by a team of scientists from Skoltech, Universitat Politècnica de València, Institute of Spectroscopy of RAS, University of Warsaw, and University of Iceland has led to groundbreaking findings in the field of quantum vortices in optically excited semiconductor microcavities. The study, published in Science Advances, highlights the spontaneous formation and synchronization of
The field of quantum physics has been fascinating researchers for decades, with new discoveries being made frequently. Recently, scientists at the University of Bonn have made a groundbreaking discovery by manipulating light particles into a super photon, known as Bose-Einstein condensate. This innovative technique involves using tiny nano molds to shape the light into a
Researchers at the National University of Singapore (NUS) have made a groundbreaking discovery in the field of quantum computing. By simulating higher-order topological (HOT) lattices with digital quantum computers, they have unlocked a new realm of possibilities for understanding advanced quantum materials with robust quantum states. These complex lattice structures hold the key to various
In a groundbreaking discovery published in Nature, a collaborative research team has identified the world’s first multiple Majorana zero modes (MZMs) in a single vortex of the superconducting topological crystalline insulator SnTe. This discovery opens up new possibilities for controlling the coupling between MZMs and offers a promising pathway to realizing fault-tolerant quantum computers. Led
The recent publication in the Journal of Applied Physics by a team of scientists from Lawrence Livermore National Laboratory (LLNL), Argonne National Laboratory, and Deutsches Elektronen-Synchrotron introduces a new sample configuration that enhances the reliability of equation of state measurements in previously unattainable pressure regimes within the diamond anvil cell. Achieving high-quality static equation-of-state measurements