Semiconductor moiré superlattices have recently garnered significant attention in the field of quantum physics. These material structures, composed of artificial atom arrays arranged in a moiré configuration, offer high tunability and exhibit strong electron interactions. Researchers at Massachusetts Institute of Technology (MIT) have recently conducted a study to further explore these materials and delve into
Science
Quantum computing has made significant progress in recent years, with companies like Google and IBM offering cloud-based quantum computing services. However, these quantum computers still face limitations when it comes to solving problems that traditional computers struggle with due to the lack of available qubits, the basic units of quantum information. Unlike binary bits in
The pursuit of improved quantum computer performance has always been a paramount goal for scientific communities. However, a recent experimental study conducted by a joint team from Los Alamos National Laboratory and D-Wave Quantum Systems challenges the conventional approach. Instead of solely focusing on achieving superior quantum computer performance over classical counterparts, the team aimed
In a groundbreaking achievement, a team of experimentalists at the Max Planck Institute of Quantum Optics (MPQ) and theorists at the Chinese Academy of Sciences (CAS) have successfully created and stabilized a new type of molecule known as field-linked tetratomic molecules. These “supermolecules” have only been able to exist at ultracold temperatures, and their existence
In a groundbreaking research study, an international team of scientists has successfully conducted ultra-precise X-ray spectroscopic measurements of helium-like uranium. Led by researchers from Friedrich Schiller University Jena and the Helmholtz Institute Jena in Germany, the team achieved remarkable results by disentangling and separately testing quantum electrodynamic effects for extremely strong Coulomb fields of the
Plasma, often referred to as the fourth state of matter, is an ionized gas that contains electrons, ions, atoms, molecules, radicals, and photons. Unlike solids, liquids, and gases, plasma permeates everything and has ushered in a new era in technology. Previously, manufacturing electronic devices like mobile phones required the use of polluting chemical products to
Fusion, the process of combining atomic nuclei to release a tremendous amount of energy, holds great promise as a cleaner alternative to fossil fuels. One of the key challenges in fusion energy research is finding ways to efficiently harness this energy. Scientists at the Department of Energy’s Princeton Plasma Physics Laboratory (PPPL) are exploring the
In a recent study published in Nature Communications, researchers from Los Alamos National Laboratory have made significant progress in the field of quantum devices by investigating topological phases of matter. By utilizing a unique strain engineering approach, the research team successfully converted hafnium pentatelluride (HfTe5) into a strong topological insulator phase. This breakthrough has the
Particle diffusion, a fundamental physical phenomenon, has long been studied and understood through the lens of Brownian motion. However, recent experiments have revealed unexpected patterns in particle diffusion, pointing towards a deeper complexity in this process. In a groundbreaking study published in The European Physical Journal B, researchers Adrian Pacheco-Pozo and Igor Sokolov from Humboldt
Quasicrystals have become a focal point for researchers in the field of condensed matter physics as they offer unique properties not found in normal crystals. These intermetallic materials have non-repeating ordered patterns of atoms, unlike the regular and repeating patterns seen in conventional crystals. Among the various quasicrystal variants, the Tsai-type icosahedral quasicrystal (iQC) and